
D
R

A
FT

Gen with Lazy Evaluation∗

Michael Hammond

U. of Arizona

November 1, 2009

1 Introduction

Optimality Theory (OT) now exists in multiple flavors, e.g. orthodox (Mc-
Carthy and Prince, 1993; Prince and Smolensky, 1993), stochastic (Boersma,
1997; Boersma and Hayes, 2001), harmonic (Smolensky and Legendre, 2006),
etc. In the orthodox version, the derivation proceeds as follows. There is an
input candidate and an infinite set of possible output candidates. There is a
finite set of constraints that assign violations to the output candidates, and
the candidate that violates the least number of constraints is selected as the
surface form.1 Orthodox OT calculates the winner in terms of strict rank-
ing: constraints are strictly ordered and a single violation of a higher-ranked
constraint overpowers any number of violations of a lower-ranked constraint.

In the schematic example below, there is a finite set of constraints ranked
left to right. There is an infinite set of candidates given on the left side of
each row. Violations are marked with asterisks, and the winning candidate
is marked with the pointing hand.

∗Thanks to Amy Fountain and Diane Ohala for useful discussion. All errors are my
own.

1Nothing formally requires that there be a single winning candidate (Idsardi, 1992;
Hammond, 1994, 2000), but we can set this issue aside.

1

D
R

A
FT

(1)
/kæt/ A B . . . C

☞ [khæt] * *****
[hit] **!
[hæk] **!*
[čer] **!

[vznork] * *!
. . . * *!*

Notice first that all the candidates violate constraint A; hence only candi-
dates that violate A as little as possible remain in the candidate set: [khæt],
[vznork], and the set denoted by “. . . ”. All but the first violate the lower-
ranked constraint B, so the first emerges as the winning pronunciation. No-
tice too that the winning candidate violates constraint C five times, but these
violations are irrelevant as higher-ranked constraints have already selected
[khæt] as the winning pronunciation.

The main problem for any implementation of OT is the infinite candidate
set (Ellison, 1994; Hammond, 1995; Tesar, 1995). First, if we view the deriva-
tion as analogous to the construction of a constraint tableau as above, then
surely one step in that process would be to list out the candidates. On the
most obvious interpretation of what this would entail, this step would never
terminate and we would never be able to proceed to determining violations
and selecting a winning candidate.

A second problem is that even if we find a mechanism to get all the
candidates listed, we must still assign violations. Again, the simplest in-
terpretation of what this entails is writing in the asterisks in the tableau.
Since there are an infinite number of rows, any of which could violate any
constraint, the job of determining violations would never end.

In fact, the problem continues on. Even if we could list all the candidates
and get all the violations marked, we would still have to calculate which
candidate violates the fewest constraints, modulo strict ranking or some al-
ternative. This too poses an infinity problem.

There have been several attempts at dealing with these problems. Ham-
mond (1995) and Tesar (1995) propose different finite versions of Gen. Elli-
son (1994) proposes to represent the candidate set with a finite automaton,
thus allowing the infinite set to be represented with finite means. Finally,
Karttunen (1998) elaborates the finite-state approach, developing an idea
from the first paper.

2

D
R

A
FT

In this paper, we take another approach. Specifically, we show how the
notion of lazy evaluation in a functional programming context can be used
to treat Gen. The basic idea behind lazy evaluation is that we construct
infinite sets which are not immediately evaluated. The programming context
is one where we only evaluate such sets when we need to and we only evaluate
as much of them as we need in the context at hand. These properties, we
will show, allow us an elegant treatment of Gen.

The organization of this paper is as follows. First, we outline how lazy
evaluation works, using the functional programming language Haskell (Jones,
2003) as our framework.2 Next, we provide an implementation of Gen using
lazy evaluation to avoid the infinity problems listed above. We then show how
the system works for the case of containment-based syllabification. Finally,
we consider the issues raised by our implementation for phonological theory.

2 What is Lazy Evaluation?

Lazy evaluation is a concept from functional programming. To understand
the former, we must first understand the latter. The basic idea behind func-
tional programming is that a program is a set of functions and constants. A
number like 6 or a string like "phoneme" are instances of constants. We can
also define terms that refer to constants; for example, we might define π as:

(2) myPi = 3.14159265358979

or myName as:

(3) myName = "Ishmael"

The other component of a functional programming language is the notion
of a function, something that pairs a set of values with one particular value.
Addition is a built-in function: any two numbers are paired with a specific
number. For example, the numbers 4 and 7 are uniquely paired with 11. We
can also write our own functions as follows.

(4) addTwo :: Int → Int

addTwo x = x + 2

2We choose Haskell for two reasons. First, it is a pure functional language. Second,
there are free interpreter and compiler implementations for all platforms (ghc and hugs).
Hutton (2007) is a nice pedagogical introduction to Haskell.

3

D
R

A
FT

The first line is a specification of the type of elements that this function
pairs, in this case, two integers. The second line above defines addTwo as a
function that, when applied to some number—represented as x here—returns
that value plus two. For example, we could invoke this function by writing
the function name before some constant, e.g. addTwo 6, which would produce
the result 8 when interpreted.

This is all there is in a strict functional language. Notice, in particular,
that there are no separate variables, as one would find in familiar languages
like Perl, Java, or C. Constants like myPi or myName are immutable once
defined.3

To understand lazy evaluation in a functional programming context, we
also need to understand how lists work.4 A list is a sequence of elements
terminated by the empty list. When a list is finite, we can represent it in one
of two ways, either as a sequence of elements enclosed in square brackets, e.g.
[3,5,7,7], or more explicitly as a sequence of elements concatenated with
the list construction operator :, e.g. 3:(5:(7:(7:[]))). Both lists terminate
with the empty list [], but this is only overt in the latter notation. Notice
too that the list construction operator takes a list as its right operand and a
single element as its left.

We can manipulate lists in functions. Here is a function that returns the
first element of a list:

(5) myHead :: [a] → a

myHead (x:xs) = x

The function myHead returns the first element of a list.5 It does this by
pattern-matching on its argument, requiring that its argument be a list with
two parts—a first element x and the remaining elements xs. The same sort
of move can be used to write a function that returns the remaining elements
of a list:

3One frequent misunderstanding of functions is that they change some set of things
into another and this would seem to be at odds with the notion of immutability. It is
better, therefore, to think of functions as described in the text.

4There are a host of other functional data structures with the properties we require,
but lists are one of the very simplest, familiar from languages like Lisp, and very frequently
used.

5Here and following, it is useful to write explicit functions for some functions that are
typically already available in the standard Haskell prelude (library). This allows us to be
maximally explicit about what our functions do. When we do this, the function we write
will begin with the string my, e.g. myHead, myTail, myConcat, etc.

4

D
R

A
FT

(6) myTail :: [a] → [a]

myTail (x:xs) = xs

Finally, we can write functions that manipulate lists recursively. Here is
a more complex function that returns the first n elements of a list:

(7) myTake :: Int → [a] → [a]

myTake 0 _ = []

myTake n (x:xs) = x:myTake (n-1) xs

This function takes two arguments, a number and a list. If the number is 0,
then the function returns the empty list; it doesn’t matter what the second
argument is. If the number is greater than 0, then the function returns the
first element of the list concatenated with the result of applying the function
to the next smaller number and the remainder of the list.

We can show this schematically in steps with the function application
myTake 2 [4,5,6,7].

(8) a. myTake 2 [4,5,6,7]

b. 4:(myTake 1 [5,6,7])

c. 4:(5:(myTake 0 [6,7]))

d. 4:(5:[])

e. [4,5]

We begin by applying the function with arguments 2 and [4,5,6,7]. Re-
membering that the latter is equivalent to 4:(5:(6:(7:[]))), the result is
the concatenation of 4 with myTake 1 [5,6,7]. We then evaluate the embed-
ded myTake call, producing 5:myTake 0 [6,7]. Finally, the last call produces
[], and we assemble all the bits into [4,5].

This mode of interpretation is, in fact, the way Haskell proceeds: from
outside down through embeddings. Lazy evaluation refers to the fact that
evaluation only occurs when required and only as much as is required. In the
example above, we go through the list argument only as far as necessary; it
doesn’t matter what follows the number 5, since myTake is satisfied at that
point.

We can see this with an infinite list. Here’s how we can define a recursive
function that returns an infinite series of numbers:

5

D
R

A
FT

(9) infnum :: Int → [Int]

infnum x = x:infnum (x+1)

Consider how this would work when invoked as infnum 1.

(10) a. infnum 1

b. 1:(infnum 2)

c. 1:(2:(infnum 3))

d. 1:(2:(3:(infnum 4)))

e. . . .

Like myTake, the definition of infnum is recursive. However, unlike myTake,
there is no exit clause; there is no mechanism to stop the recursion. Thus,
invoking this command directly will result in the system trying to produce
an infinite series of numbers.

Consider, however, what happens when we invoke infnum 1 inside a call
to myTake:

(11) a. myTake 2 (infnum 1)

b. myTake 2 (1:infnum 2)

c. 1:(myTake 1 (infnum 2))

d. 1:(myTake 1 (2:infnum 3))

e. 1:(2:(myTake 0 (infnum 3))

f. 1:(2:[])

g. [1,2]

We begin with a call to infnum 1 embedded in a call to myTake with the
argument 2. If its first argument is greater than 0, myTake requires its second
argument be interpretable as a list with a first element: x:xs. We must
therefore interpret down one more level to see if infnum 1 can be parsed in
this way. Step b above shows that it can. Step c shows that we can then
interpret myTake one step further, altering its first argument to 1. We repeat
the cycle, producing one more call to myTake, but this time with the argument

6

D
R

A
FT

0. Now the definition of myTake can return [] without interpreting its second
argument at all; this is indicated with the single underscore in the definition
of myTake. The bits are all assembled and the final result is [1,2].

Since this call to myTake requires no more than two calls to infnum, the
process terminates. Even though we are manipulating an object that repre-
sents an infinite list, we can do so with impunity since that object is invoked
in a context where it only needs to be finitely interpreted. This is lazy eval-
uation.

3 The Overall Logic

The overall logic for our proposal can now be laid out. First, can we represent
the entire candidate set as an infinite list, analogous to infnum above? Sec-
ond, can we represent OT-style constraints as functions that winnow through
such a list, like myTake above? We consider each of these problems in turn.

The first problem is superficially straightforward. We can generate an infi-
nite list of strings quite easily. First, here is code to generate a list of strings
containing only a single symbol. The key new bit here is that strings are
themselves lists; thus a string like "aaa" is equivalent to ’a’:(’a’:(’a’:[])).

(12) infa :: String → [String]

infa x = x:infa (’a’:x)

The infa function is actually quite similar to that for infnum. The
difference is that the new function adds longer and longer strings to the
list, rather than adding larger and larger numbers. If we invoke this as
myTake 5 (infa ""), then we get: ["","a","aa","aaa","aaaa"].

It requires a little more sophistication to get an infinite set of strings over
some alphabet. First we need some utility functions:

7

D
R

A
FT

(13) myMap :: (a → b) → [a] → [b]

myMap f [] = []

myMap f (x:xs) = f x:myMap f xs

myPlusplus :: [a] → [a] → [a]

myPlusplus [] ys = ys

myPlusplus (x:xs) ys = x:myPlusplus xs ys

myConcat :: [[a]] → [a]

myConcat [] = []

myConcat (x:xs) = myPlusplus x (myConcat xs)

The myMap function takes a function and a list of elements and applies
the function to each element in the list producing a new list.6 For ex-
ample, myMap (+2) [1,6,4] produces [3,8,6]. The myPlusplus generalizes
the list construction operator and allows us to concatenate two lists. Thus
myPlusplus [1,2] [7,4] produces [1,2,7,4]. Finally, the myConcat function
generalizes myPlusplus to any number of lists. If we invoke myConcat like this:
myConcat [[1,2],[4,7],[9,2]], this produces [1,2,4,7,9,2].

Let’s now look at the code to generate the infinite set of all possible
strings over the alphabet {a, b, c}. First, we define the set of letters:

(14) letters :: String

letters = "abc"

We then define a function that will take a string and return the list of strings
formed by prefixing each letter of the alphabet to the string. Thus the
invocation pfx "x" produces ["ax","bx","cx"].

(15) pfx :: String → [String]

pfx x = myMap (:x) letters

We then generalize pfx so that it does the same to lists of strings:

(16) pfxall :: [String] → [String]

pfxall x = myConcat (myMap pfx x)

Invoking this on ["ax","bx","cx"] with pfxall ["ax","bx","cx"] produces:

6Functional programming languages typically allow functions to be used directly as
arguments to other functions.

8

D
R

A
FT

(17) ["aax","bax","cax","abx","bbx","cbx","acx","bcx","ccx"]

Finally, we write a recursive function over pfxall that creates lists of
strings, each one produced by applying pfxall to the previous list. The
function then joins all the results together with myPlusplus.

(18) infstrings :: [String] → [String]

infstrings x = myPlusplus x (infstrings (pfxall x))

Invoking this directly with infstrings [""] would produce an infinite list of
strings. We can use lazy evaluation and force only the first 30 strings to be
produced with a call like this: myTake 30 (infstrings [""]). This produces
the following output:

(19) ["","a","b","c","aa","ba","ca","ab","bb","cb",

"ac","bc","cc","aaa","baa","caa","aba","bba",

"cba","aca","bca","cca","aab","bab","cab",

"abb","bbb","cbb","acb","bcb"]

Assuming we can encode a phonological representation as a string of sym-
bols, this establishes that Gen can be formalized in terms of lazy evaluation.
Every possible string over the basic segmental vocabulary will be generated
by this set of functions.

The phonological representation is, of course, richer than a simple string
of segments, but this is not a substantive problem. Haskell, like any other
programming language, can accommodate whatever data structures we might
wish to define. As long as we can commit ourselves to some coherent struc-
tural implementation of any bit of nonlinear phonology, we can implement a
lazy Gen using that structure.

Let’s now turn to the question of how to winnow through such a set.
Basically, we need something to implement Eval over the results of Gen.
There are two general strategies. One possibility is to posit a function that
checks every element for some property. This check would be a function itself
that returned the boolean values True and False. We can write this function
as below:

(20) myFilter :: (a → Bool) → [a] → [a]

myFilter _ [] = []

myFilter f (x:xs) = if f x

then x:myFilter f xs

else myFilter f xs

9

D
R

A
FT

The myFilter function applies the function f to every element x in a list,
keeping that element if f x returns True. We can use the built-in function
even to test this with lists of numbers. If we invoke myFilter with even as
in: myFilter even [4,1,2,7], we get [4,2].

Of course, if we use myFilter and even with an infinite list of numbers, the
operation will never terminate. Thus a call like myFilter even (infnum 1)

goes on forever. We can avoid this, of course, by embedding this call in an
invocation of myTake: myTake 10 (myFilter even (infnum 1)). The latter
will return [2,4,6,8,10,12,14,16,18,20].

Something like myFilter is fine for constraints that allow for an infinite
number of well-formed candidates. For example, a constraint like Ons, which
penalizes any syllable that has no onset, produces an infinite set of well-
formed candidates. This obtains because the only mechanism for making the
candidate set infinite is epenthesis and Ons will let pass all those multiply
epenthesized forms where all syllables have onsets.

There are, however, other constraints that cannot be modeled in this
way, constraints that reduce the infinite candidate set to a finite subset. For
example, a constraint like Fill, which penalizes epenthesis, will rule out
any candidate that has epenthetic elements. The remaining candidate set is
finite.7

To accommodate constraints like Fill, we need something else. Specifi-
cally, we must assume that the candidates are sorted, such that as we progress
through the set, the number of epenthetic elements increases. Second, we
need a function that tests each element for a property, but that terminates
as soon as that property is not met. Here is how that would look.

(21) myTakeWhile :: (a → Bool) → [a] → [a]

myTakeWhile _ [] = []

myTakeWhile f (x:xs) = if f x

then x:myTakeWhile f xs

else []

This function takes elements from the front of a list as long as some prop-
erty is satisfied. Once the property does not hold, no additional elements
are taken. The difference from myFilter is the else clause: in the case of
myFilter, we invoke the function on the remainder of the list; in the case of

7This assumes, of course, that the set of nonlinear structures and possible segments is
finite.

10

D
R

A
FT

myTakeWhile, we stop processing and return the empty list. If we invoke the
second function on the same list with myTakeWhile even [4,1,2,7], we get
[4] because the function fails when it reaches the second element of the list.

Consider the different behaviors of these constraints when invoked with a
predicate like (<5), which tests for whether its argument is less than 5. We
invoke these as below:

(22) myTakeWhile (<5) (infnum 1)

myFilter (<5) (infnum 1)

In the first case, the function returns [1,2,3,4]. In the second case, the
function continues forever. In the case of myTakeWhile, the function succeeds
with 1 through 4. When it reaches 5, it terminates because 5 fails the test.
In the case of myFilter, the function succeeds with 1 through 4, fails with 5,
but continues on looking for numbers less than 5. . . which, of course, it will
never find.

As functions for winnowing through an infinite list, myFilter has the
advantage that it will find every element in the string that matches the test.
It has the disadvantage that it will look forever if the list is infinite. The
myTakeWhile function will only work if all the cases to be returned are at the
beginning of the list. On the other hand, it has the advantage that it will
terminate definitively if the list is sorted appropriately. We need both sorts
of functions.

4 A Test Case

To assess whether lazy evaluation along the lines we’ve sketched here will
work, we will take a simple test case: containment-based syllabification
(Prince and Smolensky, 1993).

The basic idea behind containment is that the input and output cannot
differ in terms of the segments they contain, but only in terms of how the
output is syllabified. This restriction on the input-output mapping limits
us to adding syllable structure and manipulating how elements in the input
are parsed or not parsed by that structure. Since there is no bound on the
number of syllables that can be assigned to the output and no restriction
against syllables with vacuous terminal nodes, there are an unbounded num-
ber of candidate output forms. There is no other mechanism deriving the
infiniteness of the candidate set.

11

D
R

A
FT

Consider, for example a hypothetical input /CV/. We represent syllable
boundaries—where necessary—with period (full stop), epenthetic elements
with C or V, and unparsed segments with angled brackets, e.g. 〈C〉 or 〈V〉.
If we exclude epenthetic elements, we have just these four possibilities: [CV],
[〈C〉V], and [〈C〉〈V〉]. Following Prince and Smolensky, we only consider
syllable parsings that are canonically well-formed, i.e. [.V.], [.CV.], [.VC.],
and [.CVC.], ruling out [C〈V〉].

If we add in epenthetic elements, the set of possible pronunciations ex-
pands infinitely. Let’s start with one epenthetic element. Here is an exhaus-
tive list of all 11 syllabifications of /CV/ possible with only one epenthetic
segment.

(23) CV 〈C〉V (C〈V〉) 〈C〉〈V〉
V.CV 〈C〉V.V VC〈V〉 V〈C〉〈V〉
VC.V 〈C〉CV CV〈V〉
CVC 〈C〉VC

CV.V 〈C〉V.V

The relative order of epenthetic elements and unparsed elements or syllable
boundaries are not contrastive. Thus [〈C〉V.V], [V〈C〉.V], and [V.〈C〉V] are
identical. Notice too that even though [C〈V〉] is not itself a legal candidate,
we can generate legal candidates from it with epenthesis.

We can continue on in like vein. Here is a table of all 38 candidates with
two epenthetic elements.

(24) CV 〈C〉V (C〈V〉) 〈C〉〈V〉
CV.V.V CV.CV CV〈C〉.V CVC.〈V〉 CV〈C〉〈V〉
CV.VC CVC.V V.C〈C〉V V.VC〈V〉 VC〈C〉〈V〉
V.CV.V V.V.CV V.V〈C〉.V VC.V〈V〉 V.V〈C〉〈V〉
VC.V.V V.VC.V V〈C〉.VC V.CV〈V〉
V.CV.V VC.CV C〈C〉VC CVC〈V〉
VC.V.V CV.CV V〈C〉.V.V CV.V〈V〉
VC.CV CVC.V C〈C〉V.V
V.CVC VC.VC VC.〈C〉V
CV.CV CVC.V
CV.VC CV.V.V
CV.V.V

We will see that it is essential in our account of Gen that the effects

12

D
R

A
FT

of epenthesis be orderable, though other orderings are possible. Moreover,
we order candidates into bins, each of which is finite in size. Ordering by
epenthesis as above satisfies both requirements.

Another possibility is building an ordering of candidates on the number
of syllables in the candidate. If there are no syllables in the candidate, there
is only one: [〈C〉〈V〉]. If there is a single syllable, then we get the following
14 candidates:

(25) 〈C〉〈V〉 CV 〈C〉V C〈V〉
〈C〉〈V〉V CV 〈C〉V C〈V〉V
〈C〉〈V〉CV CVC 〈C〉CV C〈V〉VC

〈C〉〈V〉CVC 〈C〉VC VC〈V〉
〈C〉〈V〉VC 〈C〉CVC CVC〈V〉

Since, as we noted above, the relative order of unparsed segments and
epenthetic elements is not contrastive, we can exclude unparsed elements
from our graphical representations. This is just a matter of presentation,
however, as one can reconstruct the number of unparsed elements by com-
paring candidates with the input. With this assumption, we can convert the
table above to the following:

(26) CV V C
V CV V CV

CV CVC CV CVC

CVC VC VC
VC CVC CVC

With two syllables, we get 112 candidates. Again, we leave out unparsed
elements for perspecuity.

(27) V.V V.V V.V
V.CV V.CV V.CV

V.CV V.CV V.VC

V.VC V.VC V.VC

V.CVC V.CVC V.CVC

V.CVC V.CVC V.CVC

13

D
R

A
FT

(28) CV.V CV.V CV.V
CV.V CV.V CV.V

CV.CV CV.CV CV.CV

CV.CV CV.CV CV.CV

CV.CV CV.CV CV.VC

CV.VC CV.VC CV.VC

CV.VC CV.VC CV.VC

CV.CVC CV.CVC CV.CVC

CV.CVC CV.CVC CV.CVC

CV.CVC CV.CVC CV.CVC

(29) VC.V VC.V VC.V
VC.V VC.V VC.CV

VC.CV VC.CV VC.CV
VC.CV VC.CV VC.CV

VC.VC VC.VC VC.VC

VC.VC VC.VC VC.VC

VC.CVC VC.CVC VC.CVC

VC.CVC VC.CVC VC.CVC

VC.CVC VC.CVC

(30) CVC.V CVC.V CVC.V
CVC.V CVC.V CVC.V
CVC.V CVC.V CVC.CV

CVC.CV CVC.CV CVC.CV
CVC.CV CVC.CV CVC.CV

CVC.CV CVC.CV CVC.CV

CVC.VC CVC.VC CVC.VC

CVC.VC CVC.VC CVC.VC

CVC.VC CVC.VC CVC.VC

CVC.CVC CVC.CVC CVC.CVC

CVC.CVC CVC.CVC CVC.CVC

CVC.CVC CVC.CVC CVC.CVC

CVC.CVC CVC.CVC

It will turn out that the latter ordering on syllables is empirically superior
to the former ordering based on epenthesis.

14

D
R

A
FT

Let’s now consider the constraints Prince and Smolensky use to manipu-
late these representations. There are four basic ones:

(31) a. Parse: Underlying segments must be parsed into syllable
structure.

b. Fill: Syllable positions must be filled with underlying seg-
ments.

c. Ons: A syllable must have an onset.

d. -Cod: A syllable must not have a coda.

The first two constraints are faithfulness constraints. They serve to limit
epenthesis and deletion. The last two constraints are markedness constraints
and militate for the least marked syllabification.

Ranking is used to get different effects. If a markedness constraint is
ranked above a faithfulness constraint, then the lowest-ranked faithfulness
constraint will determine whether epenthesis or deletion is used to satisfy
that markedness constraint. If, on the other hand, faithfulness constraints
are ranked above markedness, then inputs are syllabified as best they can
without epenthesis or deletion. Here is an example of the former, where
markedness is ranked high and Fill is ranked lowest.

(32)
/V/ Ons -Cod Parse Fill

V *!
〈V〉 *!

☞ CV *

Here, the markedness constraints are ranked at the top, meaning that the
requirements for an onset and that there not be a coda must be met. The
Fill constraint is ranked at the bottom of the hierarchy entailing that these
requirements are met by epenthesis. If, instead, Parse were ranked at the
bottom, we’d get deletion instead:

(33)
/V/ Ons -Cod Fill Parse

V *!
☞ 〈V〉 *

CV *!

15

D
R

A
FT

The same logic works in the case of codas with a suitable input. The
following two tableaux show how this works for something like /CVC/. First,
we see that epenthesis results when -Cod is ranked above a faithfulness
constraint and Fill is ranked bottommost.

(34)
/CVC/ Ons -Cod Parse Fill

CVC *!
CV〈C〉 *!

☞ CVCV *

Then we see that deletion results when Parse is at the bottom.

(35)
/CVC/ Ons -Cod Fill Parse

CVC *!
☞ CV〈C〉 *

CVCV *!

Finally, we see that when both faithfulness constraints are ranked above
the markedness constraints, markedness violations in the input surface as is.

(36)
/CVC/ Fill Parse Ons -Cod

☞ CVC *
CV〈C〉 *!
CVCV *!

This system provides an account of the fact that, while onsets can be
required, codas can never be, and that while codas can be disallowed, onsets
never are. In fact, Prince and Smolensky present this as a theorem.

(37) Universally Optimal Syllables
No language may prohibit the syllable .CV. Thus, no language
prohibits onsets or requires codas.

The constraints presented have different effects in terms of the finiteness
of the candidate set that they might permit. The constraints Parse, Ons,
and -Cod permit an infinite candidate set. To see this, note that for each
case, there are an infinite number of possible candidates for /CV/ that do
not violate the constraint at all.

16

D
R

A
FT

For Parse, we can generate an infinite number of candidates that are
well-formed by suffixing any number of instances of V, e.g. [CV], [CV.V],
[CV.V.V], [CV.V.V.V]. etc. The same set suffices for -Cod. For Ons, we
generate an infinite set of well-formed candidates by appending the sequence
CV: [CV], [CV.CV], [CV.CV.CV], [CV.CV.CV.CV], etc.

This is impossible for Fill. The only way to generate an infinite candi-
date set is with epenthesis, but epenthesis gives rise to violations of Fill.
Hence, the set of candidates that are well-formed with respect to Fill is
finite.

We must therefore distinguish between Fill violations and the other cases
in terms of technology analogous to the difference between myTakeWhile and
myFilter. To do this, we generate candidates lazily, binning by the number of
syllables: {B0, B1, B2, . . .}. Starting at the first bin, we evaluate candidates
as usual, selecting a winner—or winners—for that bin, call this w(B0). We
then go on to the next bin and evaluate the candidates there, determining
the winner for that bin w(B1). In the general case, if the winner for some
bin w(B

n
) is better than w(B

n−1), we continue on to B
n+1. If w(B

n
) is not

better than w(B
n−1), then we are done and the winning candidate for the

entire set is w(B
n−1).

We can express this algorithm in (procedural) pseudocode as follows:

(38) a. Set global winner to null.

b. Go to first bin.

c. Assess violations for all candidates in current bin.

d. Choose winner from current bin.

e. If current winner is better than global winner:

i. set global winner to current winner, and

ii. go to next bin, and

iii. go to (c)

else end: global winner is winner.

Let’s now look at an example. Consider the candidate /VC/ with the
constraint ranking Ons ≫ -Cod ≫ Parse ≫ Fill.

17

D
R

A
FT

The first bin B0 has no syllables; hence all segments are unparsed and
there is only one candidate: [〈V〉〈C〉], and it is, of course, the winner, e.g.
w(B0) = 〈V〉〈C〉. We now compare that winner to the winner of B1. First,
we determine w(B1) as in the following tableau. There are a finite number
of candidates, but for convenience not all candidates are given.

(39)
/VC/ Ons -Cod Parse Fill

V〈C〉 *! *
VC *! *

CV〈V〉〈C〉 **! **
☞ 〈V〉CV * *

We see that w(B1) = 〈V〉CV. We must now compare w(B0) with w(B1).
This is shown in the following tableau.

(40)
/VC/ Ons -Cod Parse Fill

〈V〉〈C〉 **!
☞ 〈V〉CV * *

Since w(B1) wins, we must go on to evaluate the candidates of B2. Again,
there are a finite number of candidates, but too many to display easily, so
the following tableau just contains a few of them.

(41)
/VC/ Ons -Cod Parse Fill

VCV *! *
CVCVC *! ***
〈V〉CVCV *! ***

☞ CVCV **

Again, the winner(s) here must be compared with the previous best can-
didate(s).

(42)
/VC/ Ons -Cod Parse Fill

〈V〉CV *! *
☞ CVCV **

Since w(B2) wins, we must go on to consider B3. Once again, only repre-
sentative candidates are given (though the full number is, of course, finite).

18

D
R

A
FT

(43)
/VC/ Ons -Cod Parse Fill

☞ CVCVCV ****
☞ CVCVCV ****

CVCVC *! ***

Here two candidates tie for w(B3), so both must be compared with the
previous winner.

(44)
/VC/ Ons -Cod Parse Fill

☞ CVCV **
CVCVCV ***!*
CVCVCV ***!*

Here w(B2) wins out over the candidates from w(B3) and Eval termi-
nates with [CVCV] as the overall winning candidate.

The general procedure involves considering the candidate set in incre-
ments determined by syllable structure. At each stage only a finite number
of candidates need be considered and the procedure only goes on to the next
stage if the last stage produces the best candidate up to that point.

Other binning logic would not fare as well. Consider again binning by the
number of instances of epenthesis: B0 would have no epenthesis, B1 only one
instance, and so on. The problem here is that sometimes a single instance of
epenthesis will worsen a candidate and only a second instance of epenthesis
will improve it.

Axininca Campa (Spring, 1990; McCarthy and Prince, 1993) provides
a concrete example. Axininca stems must satisfy a prosodic minimum in
certain contexts. This prosodic minimum must occasionally be achieved by
multiple instances of epenthesis. For example, the root na ‘carry on shoulder’
is realized as [naTA] with the suffix string [piroTaanchi].8

The precise constraints that force this are not the issue. Basically, words
must be at least feet and feet must be at least binary. On such an analysis,
a single instance of epenthesis provides no improvement. More concretely,
let’s assume an analysis with the following constraints:

(45) -Cod ≫ Ons ≫ FtBin ≫ Parse ≫ Fill

8In our discussion of Axininca, we will follow McCarthy and Prince in representing
epenthetic elements as T and A, rather than as C and V.

19

D
R

A
FT

The FtBin constraint forces feet to be binary.
Let’s first consider how syllabic bins get the correct result. At B0, we

have only one candidate w(B0) = 〈n〉〈a〉. At B1, we have:

(46)
/na/ -Cod Ons FtBin Parse Fill

☞ na *
naT *! * *
〈n〉aT *! * * * *

We then compare w(B0) with w(B1).

(47)
/na/ -Cod Ons FtBin Parse Fill

☞ na *
〈n〉〈a〉 * *!*

Since w(B1) is better than w(B0), we go on to B2.

(48)
/na/ -Cod Ons FtBin Parse Fill

☞ naTA **
AnaT *! * **
naA *! *

We must now compare w(B1) and w(B2).

(49)
/na/ -Cod Ons FtBin Parse Fill

☞ naTA **
na *!

Since w(B2) wins, we must go on to determine w(B3).

(50)
/na/ -Cod Ons FtBin Parse Fill

☞ naTATA ****
〈n〉aTATA *! * ****

〈n〉〈a〉TATATA *!* ******

Finally, we compare w(B2) with w(B3):

20

D
R

A
FT

(51)
/na/ -Cod Ons FtBin Parse Fill

☞ naTA **
naTATA ***!*

Since w(B2) wins, we are done and have gotten the desired result.
If we were to bin by number of instances of epenthesis, we would not get

the correct result. Let’s go through the same derivation with bins by epenthe-
sis to see this. First, we consider B0. Notice that the number of syllables is
not controlled in this bin, only the number of instances of epenthesis.

(52)
/na/ -Cod Ons FtBin Parse Fill

☞ na *
〈n〉a *! * *
〈n〉〈a〉 * *!*

We now go on to B1, where every candidate has a single instance of
epenthesis.

(53)
/na/ -Cod Ons FtBin Parse Fill

naT *! * *
Ana *! * * *

☞ T〈n〉a * * *

We now compare w(B0) with w(B1):

(54)
/na/ -Cod Ons FtBin Parse Fill

☞ na *
T〈n〉a * *! *

Here, w(B0) wins, so the algorithm terminates with the incorrect result.
The problem is that we have found a local minimum in optimality before
we reached B2. Hence, if we have captured the essential properties of the
Axininca analysis correctly, binning by the number of instances of epenthesis
is empirically inadequate.

On the other hand, we have seen that for containment-based OT, syllable-
based binning works with lazy Gen.

21

D
R

A
FT

5 Remaining issues

There are several remaining issues.
One issue is whether the model generalizes to correspondence-based Opti-

mality Theory (McCarthy and Prince, 1995). In this version of OT, anything
can change from input to output and we are not bound to containment.

Correspondence-based OT is not a problem for lazy Gen. We’ve already
seen in Section 3 that we can generate an infinite candidate set over any finite
alphabet. If we syllabify those candidates, we can just as easily bin them by
the number of syllables each candidate contains. If, on the other hand, the
alphabet is not finite, then there would indeed be a problem.

A second general question concerns the nature of the bins. Syllable-based
bins will not generalize to other domains, e.g. morphology or syntax. We are
not committed to syllable-based bins for every possible domain of grammar.
It may very well be that bins in other domains are empirically determined.
We are committed to the position that some binning will work in all other
domains, because lazy Gen requires bins.

A third remaining issue is whether syllable-based bins are adequate for
phonological theory. The prediction of syllable-based bins is that the best
candidate will never be more than a bin further along than the previous best
candidate. In more formal terms, we cannot have a situation whether w(B

n
)

is the true winner, but w(B
n−1) loses to w(B

n−2).
What would such a case look like? Imagine a language like Axininca,

but where the optimal candidate must be at least three syllables long, i.e.
[naTATA]. Syllable-based bins with lazy Gen would not find this candidate.

References

Boersma, Paul. 1997. How we learn variation, optionality, and probability.
ROA #221.

Boersma, Paul, and Bruce Hayes. 2001. Empirical tests of the Gradual Learn-
ing Algorithm. Linguistic Inquiry 32:45–86.

Ellison, T. Mark. 1994. Phonological derivation in Optimality Theory. COL-

ING 94 1007–1013.

Hammond, Michael. 1994. An OT account of variability in Walmatjari stress.
ROA #20.

22

D
R

A
FT

Hammond, Michael. 1995. Syllable parsing in English and French. ROA
#58.

Hammond, Michael. 2000. The logic of OT. WECOL 28:146–162.

Hutton, Graham. 2007. Programming in Haskell . Cambridge: Cambridge
University Press.

Idsardi, William J. 1992. The computation of prosody. Doctoral Dissertation,
MIT.

Jones, S.L.P. 2003. Haskell 98 language and libraries: The revised report .
Cambridge: Cambridge University Press.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational
phonology. In The proceedings of FSMNLP ’98: International workshop on

finite-state methods in natural language processing , 1–12. Ankara, Turkey:
Bilkent University.

McCarthy, John, and Alan Prince. 1993. Prosodic morphology. U. Mass.

McCarthy, John, and Alan Prince. 1995. Faithfulness and reduplicative iden-
tity. In Papers in Optimality Theory , ed. J. Beckman, L. Dickey, and
S. Urbanczyk, volume 18 of U. Mass. Occasional Papers in Linguistics ,
249–384. [ROA].

Prince, Alan, and Paul Smolensky. 1993. Optimality Theory. U. Mass and
U. of Colorado.

Smolensky, P., and G. Legendre. 2006. The harmonic mind: From neural

computation to optimality-theoretic grammar . Cambridge: MIT Press.

Spring, Cari. 1990. Implications of Axininca Campa for prosodic morphology
and reduplication. Doctoral Dissertation, University of Arizona.

Tesar, Bruce. 1995. Computational optimality theory. Doctoral Dissertation,
University of Colorado at Boulder.

23

D
R

A
FT

A Notes on the Implementation

The proposal outlined in the text is implemented in Haskell here as a demon-
stration proof that the system works.

This paper is written in literate Haskell style, which means that the code
and the paper derive from the same source code. This file thus constitutes
the working code and the paper that describes it.

For convenience, unparsed elements are not indicated in output forms.
Thus one candidate output for input /hat/ is [haC], with an unparsed [t]
and an epenthetic [C]. This would be equivalent to [ha〈t〉C] or [haC〈t〉]. It
is possible to reconstruct the number of unparsed elements in an output by
comparing it with the input and this is how the implementation of Parse

works below.
The program can be invoked from within the ghci or hugs interpreters by

calling the function eval with two arguments. The first argument is the input
form in double quotes. The second argument is an ordered list of constraints
in square brackets, separated by commas. For example:

(55) eval "hat" [onset,nocoda,fill,parse]

Alternatively, the program can be compiled with the ghc compiler and run
on the command-line like this:

(56) ./lazy hat onset nocoda fill parse

Lastly, the program can be run in a one-off mode with runhaskell like this:

(57) runhaskell lazy.lhs hat onset nocoda fill parse

B Implementation

import List (isPrefixOf)

import System.Environment (getArgs)

--constraints make a number from an input and and output

type Constraint = String → String → Int

--a candidate is a string and a vector of violations

24

D
R

A
FT

type Candidate = (String,[Int])

--to run the program on its own

main = do as ← getArgs

if (length as) < 2

then error "usage: lazy input c1 c2 c3..."

else do let i = head as

let cs = map convert $ tail as

putStr $ unlines $ map fst $ eval i cs

--converts strings to constraints

convert :: String → Constraint

convert "onset" = onset

convert "nocoda" = nocoda

convert "fill" = fill

convert "parse" = parse

convert "ftbin" = ftbin

convert x = error (x ++ " is not a constraint name")

--entry function for eval

eval :: String → [Constraint] → [Candidate]

eval i cs = evl [] $ map (makeCanVecs i cs) (gen i)

--evaluates bin by bin, called by eval

evl :: [(String, [Int])] → [[(String, [Int])]]

→ [(String, [Int])]

evl [] (y:ys) = evl (getBest [] y) ys

evl (x:xs) (y:ys) = if rank (>) (head best) x

then (x:xs)

else if rank (==) (head best) x

then evl ((x:xs) ++ best) ys

else evl best ys

where best = getBest [] y

--gets the highest-ranked candidates from a set

getBest :: [Candidate] → [Candidate] → [Candidate]

getBest xs [] = xs

getBest [] (y:ys) = getBest [y] ys

getBest (x:xs) (y:ys)

| rank (==) x y = getBest (y:x:xs) ys

25

D
R

A
FT

| rank (<) x y = getBest (x:xs) ys

| otherwise = getBest [y] ys

--compares the ranking of two candidate,vector pairs

rank :: ([Int] → [Int] → Bool) → Candidate →
Candidate → Bool

rank c a b = c (snd a) (snd b)

--makes a set of candidate,vector pairs for a bin

makeCanVecs :: String → [Constraint] → [String] →
[Candidate]

makeCanVecs _ _ [] = []

makeCanVecs i xs (c:cs) = (c,makeVec i xs c):makeCanVecs i xs cs

--makes a vector of violations for a ranked set of constraints

makeVec :: String → [Constraint] → String → [Int]

makeVec _ [] _ = []

makeVec i (x:xs) c = x i c:makeVec i xs c

--NOCODA constraint

nocoda :: Constraint

nocoda _ "" = 0

nocoda i c = if length c > 1 ∧ c!!1 == ’.’ ∧ isConsonant (c!!0)

then 1 + (nocoda i (tail c))

else nocoda i (tail c)

--ONSET constraint

onset :: Constraint

onset _ "" = 0

onset i c = if length c > 1 ∧ c!!0 == ’.’ ∧ isVowel (c!!1)

then 1 + (onset i (tail c))

else onset i (tail c)

--PARSE constraint

parse :: Constraint

parse i c = (length i) - (((length c) - (fill i c)) -

(count "." c))

--FILL constraint

fill :: Constraint

26

D
R

A
FT

fill _ c = (count "V" c) + (count "C" c)

--FTBIN constraint

ftbin :: Constraint

ftbin _ c = if (count "." c) > 2 then 0 else 1

--counts how many times something occurs in a string

count :: String → String → Int

count _ "" = 0

count p s = if isPrefixOf p s then 1 + (count p (tail s))

else count p (tail s)

--creates the infinite candidate set

gen :: String → [[String]]

gen w = gn w 0 where gn w n = makeBin w n:gn w (n+1)

--makes a single syllable bin

makeBin :: String → Int → [String]

makeBin w n = concat $ map (makeSyl w) (polysyllables n)

--makes all parses of an input for a single template

makeSyl :: String → String → [String]

makeSyl _ "" = [""]

makeSyl w s = map fst $ doAllSubs ((length s)-1) [(s,w)]

--does n substitutions in a list of templates+inputs
doAllSubs :: Int → [(String,String)] → [(String,String)]

doAllSubs 0 ps = concat $ map (doSubs 0) ps

doAllSubs n ps = concat $ map (doSubs n) (doAllSubs (n-1) ps)

--makes all substitutions for a particular position in template

doSubs :: Int → (String,String) → [(String,String)]

doSubs n (ps,w) = (ps,w):map makePairs fixedBits

where

makePairs x = (makeSub (fst x) ps n,snd x)

fixedBits = filter

(segType (ps!!n) ◦ fst)
theBits

theBits = map (bits w) [0..(length w)-1]

27

D
R

A
FT

--substitutes an indexed character in a string

makeSub :: Char → String → Int → String

makeSub c s n = (take n s) ++ [c] ++ (drop (n+1) s)

--gets segment type by C,V

segType :: Char → Char → Bool

segType ’C’ x = isConsonant x

segType ’V’ x = isVowel x

segType ’.’ _ = False

--returns the nth character plus remainder of the string

bits :: String → Int → (Char,String)

bits w n = (w!!n,drop (n+1) w)

--tests for consonanthood

isConsonant :: Char → Bool

isConsonant = not ◦ isVowel

--tests for vowelhood

isVowel :: Char → Bool

isVowel v = elem v vowels

--set of recognized vowels

vowels :: String

vowels = "Vaeiou"

--set of possible syllables

syllables :: [String]

syllables = words "V CV VC CVC"

--generates the set of polysyllabic shapes

polysyllables :: Int → [String]

polysyllables 0 = [""]

polysyllables n = map (++".") (polysyls n)

--called by polysyllables to make the shapes

polysyls :: Int → [String]

polysyls 0 = [""]

polysyls n = concat (map sylPfx (polysyls (n-1)))

28

D
R

A
FT

--prefixes all syllable types to a shape

sylPfx :: String → [String]

sylPfx x = map ((x++".")++) syllables

29

